Does the prostrate-leaved geophyte Brunsvigia orientalis utilize soil-derived CO2 for photosynthesis?

نویسندگان

  • M D Cramer
  • C Kleizen
  • C Morrow
چکیده

BACKGROUND AND AIMS A test was made of the hypothesis that the prostrate growth habit of the leaves of the geophyte Brunsvigia orientalis enables utilization of soil-derived CO(2) and is related to the presence of lysigenous air-filled channels characteristic of B. orientalis leaves. METHODS Brunsvigia orientalis was sampled at a field site. Leaf anatomy, stomatal density, leaf/soil gas exchange characteristics and soil atmosphere and leaf delta(13)C isotope abundances were examined. KEY RESULTS The leaves of B. orientalis have large lysigenous air-filled channels separating the upper and lower surfaces of the leaves. The upper surface comprised approx. 70 % of the leaf mass and 75 % of the leaf N (mmol g(-1)). Between 20 % and 30 % of the stomatal conductance and CO(2) assimilation was through the lower surface of the leaf. CO(2) efflux rates from the soil surface were up to 5.4 micromol m(-2) s(-1) while photosynthetic fluxes through the lower surface of the leaves were approx. 7 micromol m(-2) s(-1). However, the utilization of soil-derived CO(2) only altered the leaf delta(13)C isotope abundance of the prostrate leaves by a small amount. Using delta(13)C values it was estimated that 7 % of the leaf tissue C was derived from soil-derived CO(2). CONCLUSIONS A small proportion of photosynthetically fixed CO(2) was derived from the soil, with minimal associated transpirational H(2)O loss into the space between the leaf and soil. The soil-derived CO(2), taken up through the lower surface was probably assimilated by the palisade tissue in the upper surface of the leaf which was exposed to sunlight and where most of the leaf N was located. The occurrence of lysigenous air channels in the leaves may provide longitudinal strength without impaired transfer of CO(2) taken up through the lower surface to the upper surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna.

Low levels of crassulacean acid metabolism (CAM) are demonstrated in two species with C4 photosynthesis, Portulaca cyclophylla and P. digyna. The expression of CAM in P. cyclophylla and P. digyna is facultative, i.e. optional. Well-watered plants did not accumulate acid at night and exhibited gas-exchange patterns consistent with C4 photosynthesis. CAM-type nocturnal acidification was reversibl...

متن کامل

Effect of N and P addition on soil organic C potential mineralization in forest soils in South China.

Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from ...

متن کامل

The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region

Different land uses have various effects on the changes of soil properties. The purpose of this study was to evaluate the effects of natural forest, needle-leaved plantation and rangelands of central Alborz on new indices of soil quality (i.e. organic matter stratification, carbon management index and soil biological activities). For this purpose, eight samples from organic layer (litter) and m...

متن کامل

Effects of waterlogging on carbon assimilate partitioning in the Zoigê alpine wetlands revealed by 13CO2 pulse labeling

Waterlogging has been suggested to affect carbon (C) turnover in wetlands, but how it affects C allocation and stocks remains unclear in alpine wetlands. Using in situ (13)CO2 pulse labelling, we investigated C allocation in both waterlogged and non-waterlogged sites in the Zoigê wetlands on the Tibetan Plateau in August 2011. More than 50% of total (13)C fixed by photosynthesis was lost via sh...

متن کامل

Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils

Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2007